<?xml version="1.0" encoding="ISO-8859-1"?>
<metadatalist>
	<metadata ReferenceType="Conference Proceedings">
		<site>sibgrapi.sid.inpe.br 802</site>
		<holdercode>{ibi 8JMKD3MGPEW34M/46T9EHH}</holdercode>
		<identifier>8JMKD3MGPBW34M/3JS24KL</identifier>
		<repository>sid.inpe.br/sibgrapi/2015/07.15.21.12</repository>
		<lastupdate>2015:07.15.21.12.14 sid.inpe.br/banon/2001/03.30.15.38 administrator</lastupdate>
		<metadatarepository>sid.inpe.br/sibgrapi/2015/07.15.21.12.14</metadatarepository>
		<metadatalastupdate>2022:05.18.22.20.59 sid.inpe.br/banon/2001/03.30.15.38 administrator {D 2015}</metadatalastupdate>
		<citationkey>BiagioliPeņaImbu:2015:NeMeBo</citationkey>
		<title>New method for bounding the roots of a univariate polynomial</title>
		<format>On-line</format>
		<year>2015</year>
		<numberoffiles>1</numberoffiles>
		<size>230 KiB</size>
		<author>Biagioli, Eric,</author>
		<author>Peņaranda, Luis,</author>
		<author>Imbuzeiro Oliveira, Roberto,</author>
		<affiliation>IMPA</affiliation>
		<affiliation>IMPA</affiliation>
		<affiliation>IMPA</affiliation>
		<editor>Rios, Ricardo Araujo,</editor>
		<editor>Paiva, Afonso,</editor>
		<e-mailaddress>ericbiagioli@gmail.com</e-mailaddress>
		<conferencename>Conference on Graphics, Patterns and Images, 28 (SIBGRAPI)</conferencename>
		<conferencelocation>Salvador, BA, Brazil</conferencelocation>
		<date>26-29 Aug. 2015</date>
		<publisher>Sociedade Brasileira de Computaįão</publisher>
		<publisheraddress>Porto Alegre</publisheraddress>
		<booktitle>Proceedings</booktitle>
		<tertiarytype>Work in Progress</tertiarytype>
		<transferableflag>1</transferableflag>
		<keywords>upper bounds, positive roots, polynomial real root isolation, polynomial real root bounding.</keywords>
		<abstract>We present a new algorithm for computing upper bounds for the maximum positive real root of a univariate polynomial. The algorithm improves complexity and accuracy of current methods. These improvements do impact in the performance of methods for root isolation, which are the first step (and most expensive, in terms of computational effort) executed by current methods for computing the real roots of a univariate polynomial. We also validated our method experimentally.</abstract>
		<language>en</language>
		<targetfile>sibgrapi.pdf</targetfile>
		<usergroup>administrator</usergroup>
		<usergroup>ericbiagioli@gmail.com</usergroup>
		<visibility>shown</visibility>
		<documentstage>not transferred</documentstage>
		<mirrorrepository>sid.inpe.br/banon/2001/03.30.15.38.24</mirrorrepository>
		<nexthigherunit>8JMKD3MGPBW34M/3K24PF8</nexthigherunit>
		<citingitemlist>sid.inpe.br/sibgrapi/2015/08.03.22.49 7</citingitemlist>
		<citingitemlist>sid.inpe.br/banon/2001/03.30.15.38.24 1</citingitemlist>
		<hostcollection>sid.inpe.br/banon/2001/03.30.15.38</hostcollection>
		<agreement>agreement.html .htaccess .htaccess2</agreement>
		<lasthostcollection>sid.inpe.br/banon/2001/03.30.15.38</lasthostcollection>
		<url>http://sibgrapi.sid.inpe.br/rep-/sid.inpe.br/sibgrapi/2015/07.15.21.12</url>
	</metadata>
</metadatalist>